
844

which is assumed detectable and correctable by the operator,
and is given as (1 - P)6 + 6P(1 - P) 5 .

111. RECOMMENDATIONS

The code described herein as an example includes zero and all one’s as
code words. An ideal code would not .use these characters. Addition-
ally, an optimum code would be one that contains the maximum num-
ber of characters and further investigation of this maximal set should
uncover a subset in which some of the characters have the same error-
correction properties as the numerals.

Programmer Variability
THOMAS E. DICKEY

Ahmct-Existing citations of the Sackman programming mearch
are in error. This 1ette-x clarifies the scope of the reseuch, and the con-
dusions which can be properly drawn from it.

I. Scope OF THE SACKMAN RESEARCH

In 1966, Systems Development Corporation performed a research
project for AFWA, whose intent was to determine if time-sharing sys-
tems were more effective than batch systems. An experiment was per-
formed, using 12 experienced programmers to code and debug two
programs, one each on a time-shared system and on a batch system.
The batch system was simulated by imposing a twehour turn-around
on the debugging runs. All coding, in each case was done off-line, and
on a “simulated” batch system). Thus, 24 measurements were used, in
four cells. The results of this experiment were published in [11 and
[3]. A summary was published in the Communicutions of rhe ACM
[2]. The ACM paper is the most often cited; however, it does not in-
clude the experimental data. Only a summary of the data are presented
in [21, together with a somewhat misleading commentary. This discus-
sion focuses on the original data.
As shown in the Table I (reproduced from [l] and [3]), the experi-

mental group of 12 programmers was divided into two groups each of
six programmers who programmed one program each on time sharing
and batch. On inspection, several aspects of the data are obvious.

1) Three of the programmers programmed in SCAMP, the machine
language of the system which was used for the experiment, while the
other nine programmed in JOVIAL Time Sharing (JTS), a dialect of
ALGOL.

2) One of the nine programmers had no prior experience with
time sharing. From the discussion in [11, one finds that subject 2
learned JTS in order to accomplish the experiment. Of the set of 12
programmers, only 8 were familiar with JTS.

3) The groups of programmers were imbalanced in their time-sharing
experience; Group II had 4.6 times as much.

The programmer selection problems listed in the preceding were dis-
cussed in [11 and [21; Sackman and Grant felt that these factors were not
sufficiently important to redesign the experiment. Thus, for the purpose
of analysis, the ALGOL and machine language programming tests were
lumped together. In actuality, the experiment size is not sufficient to
determine the relative efficiency of the machine language programming;
their inclusion is misleading. If the original set of eight JTS program-
mers is studied done, the experiment is somewhat more balanced. A
balanced decomposition of the debugging data (after the experiment
design) shows that Group I debugs 2.12 times slower than Group 11,
primarily due to subject 4, who is inexperienced (3 years). Subject 4
debugs 5 times slower than six of the remaining seven programmers.
He is partly offset by programmer 2, the best and most experienced (11
years) programmer of the eight. Although lack of space precludes an
error analysis, the time-shared system was 2.53 times faster than the
batch, primarily due to the batch turn-around of two hours.
In [2], the mean and standard deviation for the debugging times are

presented to qualify the results of the experiment. However, rather
than present the total of the experimental data, a summary is presented
showing the extremes of debugging time for all programmers. Thus,

Manuscript received October 30, 1980.
The author is with Westinghouse Research and Development Center,

1310 Beulah Road, Pittsburgh, PA.

PROCEEDINGS OF THE IEEE, VOL. 69, NO. 7, JULY 1981

subject 7 required 170 hours to program the “algebra” program in a
batch environment, in machine language. Subject 3 required 6 hours to
program the same problem in JTS (ALGOL) in a time-shared environ-
ment. The ratio of these two (28.3 = 170/6) was presented as an ex-
ample of the “range of individual differences in programming perfor-
mance” [2]. Similar ratios were presented for each component of
debugging time, coding time, CPU time, program size and run time.

These ratios are misleading because they encompass all differences
due to

1) differences between time sharing and batch systems;
2) differences between the performance of JTS programmers and ma-

3) differences between the programmers on the basis of their prior
chine language programmers;

knowledge of the time-sharing system.

After accounting for the differences in classes, only a range of 5 : 1
can be attributed to programmer variability. The casual researcher, in
encountering Sackman’s paper, seizes on the 28: 1 figure primarily to
support arguments to the effect that programmer variability is “orders
of magnitude” larger than effects due to language and system differences.

u. FURTHER CITATION OF THE SACKMAN PAPER
The original Sackman paper has become a body of literature, which is

extensively cited. At the NATO conference on software engineering in
October 1968 [4], one of the panelists mentioned the range-of-
performance fwres in [21. From this authoritative reference, the 28 : 1
figures made their way into the trade literature [SI, from which point
they were extensively copied, as in [6]. In retrospect, it appears that
this single source, by means of different paths, is responsible for a large
percentage of the common stock of “knowledge” that programming
productivity is totally unpredictable. For example, in Yourdon’s book
[7], the performance range is quoted in support of the premise that
programming productivity varies over at least an order of magnitude,
even with “highly experienced” subjects. Weinberg [8] is somewhat
more cautious, and points out that Sackman did not take into account
the quality of the test programs, but simply whether or not the p r e
grams successfully executed the test cases. Other examples, though not
exhaustive, are found in [9]-[13].

The most recent case of this misinterpretation oi the Sackman expen-
ment occurs in [141, where Curtis relates that Sackman observed 25-
30 : 1 differences in performance among programmers.

hFBRJ3NCE.5
E. E. Grant and H. Sackman, “An exploratory investigation of
programmer performance under on-line and off-line conditions,”
System Development Corporation, Santa Monica, CA, SP-2581,
Sept. 2, 1966.

experimental studies comparing on-line and off-line programming
H. Sackman, W. J. Erickson, and E. E. Grant, “Exploratory and

performance,” Commun. Assoc. Comput. Mach., vol. 11, no. 1,
DO. 3-11. Jan. 1968.
H-. Sackman, Man-Computer Problem Solving. Auerbach Publish-
ers. 1970. OD. 38-47.
P. Naur aid- B. Randell, Eds., “Software engineering,” Report on
a conference sponsored by the NATO Science Committee (Gar-
misch, Germany), Oct. 7-11,1968. (Brussels, Belgium: Scientific
Affairs Division, NATO, 231 pp., 1969, p. 83.)
J. L. Ogdin, “The Mongolian hordes versus superprogrammer,”
Infmystems, vol. 19, no. 2, pp. 20-23, Dec. 1972.
“Issues in programming management,” EDP Anulyzer, vol. 12,
no. 4, 14 pp., Apr. 1974.
E. Yourdon, Techniques of Progmm Structure and Mgn.
Englewood Cliffs, NJ: Rentice-Hall, 1975.
G. M. Weinberg, The Psychology of Computer Progmmming.
New York: Van Nostrand, 1971. p. 29.
B. W. Boehm, “Software and its impact: A quantitative assess-
ment,” Datamation, pp. 48-59, May 1973.
F. P. Brooks,. Jr., The Mythical Man-Month. Reading, MA:
Addison-Wesley, 1975, p. 88.
D. Van Tassel, Program Design, Efficiency, Debugging, and Test-
ing. Englewood Cliffs, NJ: Rentice-Hall, 1978, p. 98.
E. Yourdon and L. L. Constantine, Structured Design. Engle-
wood Cliffs, NJ: Rentice-Hall, 1979, p. 292.
B. Curtis, S. B. Sheppard, P. Milliman, M. A. Borst, and T. Love,

nance tasks with the Halstead and McCabe metria,” B E E Tmns. “Measuring the psychologid complexity of software mainte-

neering,” Roc. BEE,vol. 68, pp. 1144-1157,Sept. 1980.
B. Curtis, “Measurement and experimentation in software engi-
SO- Eng., VO~. SE-5, pp, 96-104, 1979.

8
4

13

45

J
5

6
3.

9
1.

9
18

90

40
42

5

40
1

1
66

14

34

8.
0

15

8
5

6
38

Y

3
4

.6

3.
5

32
21

49

51

6
n3

I

58

12
28

26

.0

51

brou
p 1

x1

I
I

I
II

I
I

I
I

I
I

I
I

on

/o
tr

00

or

 r
oa

O
ft

8

'I

43

8
10

18

2.

3
3.

0
10

00

11
86

2

12

11
5

40
3

3.
0

20

8
9

11

50

J
2

3
5.

b
5.

0
21

88

35
50

2

19

54
1

31
0

2.
0

31

8
8

12

47

8
4

30

2.
4

3.
5

15
01

21

40

16

88

25
1

30
'75

12

.5

17
0

10

8
10

n

2.
0

5r
y

26
9

60

16

61
31

32
87

6.
6

8.
0

12

9
J

25

5

8
11

23

3.

5
I 4

16

14
1

1
2

22
86

93

3
2.

2
2.

0
10

8

J
46

12

