
C_COUNT(1) C_COUNT(1)

NAME
c_count− C-language line counter

USAGE
c_count[options] [file-specifications]

SYNOPSIS
C_count counts lines and statements in C-language source files.It provides related statistics on the amount
of whitespace, comments and code.C_countalso shows the presence of unbalanced (or nested) comments,
unbalanced quotation marks and illegal characters.

DESCRIPTION
C_count reads one or more C-language source files and displays simple statistics about them.It counts
statements (i.e., sequences of tokens terminated with semicolon) and measures the relative amount of
commentary.C_count ignores semicolons where they appear in comments or in quoted literals.

A count of semicolons is a reasonable way of counting C statements.Note, however, that it does not count
preprocessor definitions as C statements.

The statistics summary shows you the relative amount of commentary. This is the ratio of the alphanumeric
characters in comments to the total of characters in the code (ignoring tabs and other whitespace which are
not inside quotes).C_count only counts alphanumeric characters, thus ignoring punctuation used as fillers.
It also suppresses RCS and DEC/CMS history comments from this ratio.

C_count counts the number of tokens (names and constants) in the source files and gives this total, as well
as their average length.

C_count provides you not only with measurements, but also diagnostics in the form of a set of flags shown
next to each file name:

" file contains an unbalanced quote (" ).

? file contains illegal characters (e.g., nonprinting, nonwhitespace characters such as an escape).
C_count also flags tabs inside quotes. Depending on the context, these may indicate a problem
with the source code.

* file contains unterminated or nested comments. This usually indicates a problem with the source
code.

+ file contains unterminated curly-braces. This may be a problem with the source code, or a
limitation of c_count. For example, the source may contain ifdef’d chunks with curly braces such
as

#ifdef FOO
if (first_condition) {
#elif defined(BAR)
if (alternate_condition) {
#else
if (default_condition) {
#endif

If the closing curly brace is not ifdef’d to match, c_count will report the mismatch as an
unterminated block.

> file contains identifiers longer than specified by the−w option.

Unbalanced quotes may be legal. The C preprocessor permits you to define symbols which contain an
unbalanced quote mark, for example:
#define WARN (void)printf("** warning:

...
WARN item

Rather than duplicate all of the complexity of the C preprocessor, c_countpermits you to specify symbols

1



C_COUNT(1) C_COUNT(1)

which contain unbalanced quote marks.

OPTIONS
Command line options ofc_countare:

−b display block-level statistics. Thetotal number of top-level blocks (or statements), the maximum
blocklevel, counting the top as 1, and the weighted average blocklevel for code.

−c display character-level statistics.

−d show each token asc_countparses it from the input stream.

−i display identifier-level statistics.

−j annotate summary in technical format (i.e., "physical source statements" and "logical source state-
ments" for "lines" and "statements" respectively).

−l display line-level statistics.

−n suppress summary statistics.

−o file write the report to the specified file, rather than to the standard output.

−p display statistics on a per-file basis.

−q define
define tokens which may evaluate with an unbalanced quote mark ’" ’. For example,
−q WARN

tellsc_countthat the token "WARN" contains a quote mark.

−s display specialized statistics (e.g., code:comment ratio).

−t generate output in spreadsheet format (e.g., comma-separated columns). If you set any of the
options "−c", "−i", "−l" or "−s", c_countgenerates these statistics. Otherwise it generates only the
lines/statements.

−V print the version number.

−v directc_countnot only to print a summary line for each file, but also to print a running summary
showing each source line, together with the current line and statement numbers, as well as the
cumulative flags. Repeatingthe option causesc_countto also show block (curly-brace) levels.

−w LEN
specify the length for identifiers beyond which we should report an error. If this option is not
given, c_countreports identifiers longer than 31 characters.

OPERATIONS
C_count reads one or more C language source files and writes its statistics to standard output. If you do
not give any file names,c_countreads a list of file names from standard input.

The special filename "−" directsc_countto read the file itself from the standard input.

2



C_COUNT(1) C_COUNT(1)

Following is an example of the use ofc_count, showing the detailed types of information which it reports.
The percentages add up to 100%, since overlapping data are discounted.
˜/src/count (5) c_count *.[ch] */*.[ch]

1165 418 |c_count.c
17 0 |config.h

1 0 |patchlev.h
103 3 |system.h

87 33 |porting/getopt.c
8 4 |porting/getopt.h

107 31 |porting/wildcard.c
5 0?" |testing/test1.c
6 2? | testing/test2.c

20 1 |testing/test3.c
----------------

1519 492?" total lines/statements

228 lines had comments 15.0 %
7 l ines had history 0.5 %

45 comments are inline -3.0 %
142 lines were blank 9.3 %
170 lines for preprocessor 11.2 %

1017 lines containing code 67.0 %
1519 total lines 100.0 %

6355 comment-chars 18.1 %
105 history-chars 0.3 %

1277 nontext-comment-chars 3.6 %
7427 whitespace-chars 21.2 %
2882 preprocessor-chars 8.2 %

16984 statement-chars 48.5 %
35030 total characters 100.0 %

2698 tokens, average length 4.99

0.32 ratio of comment:code
3 ?:illegal characters found
2 " :lines with unterminated quotes

70 top-level blocks/statements
7 maximum blocklevel

2.67 ratio of blocklevel:code

If you use the "−p" option, c_count prints the detailed information for each file, as well as for all files
together.

ENVIRONMENT
C_count runs in a POSIX environment. Execute it on VAX/VMS by defining it as a foreign command.

FILES
C_count is a single binary module, that uses no auxiliary files (e.g.,C_COUNT.EXE on VAX/VMS).

AUTHOR
Thomas Dickey.

SEE ALSO
wc (1)

3


